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Maxwell's electromagnetic theory is symmetric under the interchange of 
electric and magnetic field strengths: E ~ H, H--->-E. To maintain this 
symmetry in the presence of sources one has to also interchange the electric 
and magnetic charges and therefore one has to introduce magnetic charges in 
the first place. In a quantum-theoretical context, as shown by Dirac, this 
requires a relation between possible values e and g of the electric and magnetic 
charges, viz., 

exp (i47reg) = I 

Dirac's theory of magnetic monopoles introduced the strings which clearly 
pointed at the topological repercussions of magnetic charge. This is more 
apparent in the Wu-Yang method of sections. Electromagnetism is a gauge 
theory of the (Abelian) U(1)-group. In the presence of magnetic charges this 
becomes extended to U(1)e • U(1)m, i.e., the direct product of an electric 
and a magnetic U(1) group. This "doubled" symmetry is not manifest in the 
original Dirac formulation, but can be made manifest at the expense of not 
manifestly exhibiting Lorentz invariance and/or locality. This is the contents 
of work by Zwanziger and Schwinger. 

Can one also introduce magnetic charges in the Yang-Mills gauge theory 
of a non-Abelian group G? More importantly, can one also thereby double 
the symmetry to Ge x Gm .9 These are obvious questions. Yet the methods of 

1 The first half  of this talk reviews the topology of magnetic monopoles in non-Abelian 
gauge theory, while the second half reviews some recent developments and contains 
some new results. For  the "older"  work I have omitted a detailed bibliography as it can 
be found in the preprint "Magnet ic  Monopole Bibliography 1973-1976" by R. A. 
C~rrigan, Jr., Fermilab-77/42. For the more recent papers full references are provided 
in the text. Work supported in part  by the National  Science Foundat ion:  Contract  
No. PHY74-08833. 
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Zwanziger and Schwinger are ill suited for direct non-Abelian generalization, 
and one has to develop the topological aspects in much more detail. To 
establish the requisite ideas, I will briefly review the work of ' t  Hoof t  and 
Polyakov--discussed by Dr. Marciano---with a more topological emphasis. 

One deals with a gauge theory in which the SO(3) gauge symmetry is 
broken spontaneously to 0(2). In terms of the scalar and vector SO(3) triplets 
~ and A~ ~ (/z = 0 . . . . .  3, a = 1, 2, 3) the Lagrangian is 

.~(e ,  a, A, ~ ,  W~ a) = - � 8 8  a~'v + � 8 9  ~ - �88 ~ - a2) 2 

with 

Duq~ a = (8~,~ ac + eE'~bcWub)~ c G~,v = O~,Wv '~ - 8vWu a + e~abcW~,bW~ c 

Because of the potential (last) term, the ground state corresponds to ~ = a 2. 
Selecting a direction q~0 ~ for ~ causes the spontaneous breakdown of SO(3) 
to 0(2). The two scalar massless Nambu-Golds tone  bosons combine with 
the two massless vector bosons W + and W -  into two massive vector bosons, 
as pointed out by Brout and Englert, by Higgs, and also by Guralnik, Hagen, 
and Kibble. Thus the particle spectrum of  the theory contains two massive 
vector bosons W + and W -  both of mass m w =  [e]a, a massless "pho ton"  
~,-= W ~ and a "leftover" Higgs boson a of  mass m~ = (2h)l/2a. Other 
possible vacua can be obtained from ~b0 by acting on it by any element g of  
SO(3). Of  course rotations around the direction of the (isovector) ~o leave it 
invariant. These rotations form an 0(2) group so that the manifold of  all 
vacua is the coset space S 0 ( 3 ) / 0 ( 2 ) .  

The field equations corresponding to the Lagrangian above have 
spherically symmetric (up to a gauge transformation) solutions 

X n 
Wm ~ = E ~ m n -  [1 - k(r)] W0 ~ = 0 

e r  2 

X G 

r  r = Ixl 

The condition that the energy be finite i s f ( r )  r-~oo > a. Particularly transparent 

is the Prasad-Sommerfield limit defined by letting h go to zero while retaining 
4 2 = a 2 at r--> oo. In this limit the differential equations for f ( r )  and k(r)  

can be solved analytically with the result 

k(r )  = Cr/s inh (Cr)  f ( r )  = [Cr coth (Cr) - 1]/er 

where 

c = m w  = l e l a  
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These classical solutions correspond in the quantum theory to particles M 
of mass 

4rr 
m ~  = Igla  g = 

e 

These particles carry a new type of  conserved charge topological in nature 
as was noted by Arafune, Freund and Goebel, Monastyrskii and Perelomov, 
Fateev, Tyupkin, and Schwarz, and by Coleman. We can see this as follows. 
At any point of  configuration space at which ~bff~ ~a 0 the normalized scalar 
fields ~a = ffa/(ffbffb)l/z define a point on a two-sphere of  unit radius S z. In 
particular, for r ~ o0ffb~b---~ a 2 So that ~ exists and defines a map from a 
sphere SR 2 of  large radius R in configuration space to the unit sphere SL 
Topologically, such a map can be characterized up to a homotopy (i.e., a 
continuous deformation) by a degree or wrapping number d much like the 
map of  a circle onto a circle by a winding number. For single-valued ~ this 
degree must be an integer. Remarkably this degree can be expressed as the 
space integral of a local density: 

f e k o d = ~ k~ = e,bce,,kS,(~8~bOk~ ~) 

SO far this is all topology and no dynamics has been used. But any dynamics 
will determine a continuous time evolution for the fields ~ and hence for d. 
Yet at any time d must be integer. There is only one way a quantity can evolve 
continuously in time and equal an integer at all times, namely, by staying put. 
Thus the space integra ! of k ~ must be time independent. The corresponding 
differential conservation law has the form 

with 

O.k" = 0 

F 1 
k..= O,*H.,= �89 H., 

But the integer d is gauge invariant, while H. .  is not. Hence  there must exist 
a gauge-invariant antisymmetric tensor F.v such that 

- f  8 .*F~ '~  O.*H"~ 

Indeed the tensor 

with 

F~,v = OuBv -- OrB. -- Huv 
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has this property and is gauge invariant (it can be recast in manifestly gauge- 
invariant form). So we find that 

M = f daxO~*F ~~ 

is a Lorentz and gauge-invariant conserved charge that can take values 
4~r/e x integer. As explained its conservation is of purely topological origin, 
independent of any dynamics. As such it generates no symmetry and its 
conservation has nothing to do with Noether's theorem. In different contexts 
such "topological charges" were considered by Finkelstein and Misner, and 
by Skyrme. 

In short, then, the scalar fields ~ at large distances from the origin are 
vacuum fields (~)2 = a 2 and they map a large two-sphere SR 2 of configuration 
space onto the vacuum manifold G/H [in the S0(3)/0(2) example considered 
above this was, of course, a two-sphere itself]. Magnetic charge is thus a 
topological characteristic of these maps from SR 2 to the manifold G/H. It 
characterizes these maps up to a homotopy. Mathematically, these homotopy 
classes are described by the second (since the map originates on a two-sphere) 
homotopy group ~z(G/H) of the vacuum manifold G/H. The conservation of 
magnetic cha~ge expresses the compatibility between topology and dynamics. 
Yet this all puts magnetic charge conservation on a new topological founda- 
tion different from that of the ordinary Noetherian charges. This is quite 
unlike the Abelian case, where as we saw magnetic charge can be viewed as 
Noetherian. Could it be that there is an alternative description of the theory 
in which magnetic charge is Noetherian rather than topological? This 
question has been asked and answered at a conjectural level in a very 
interesting paper by Montonen and Olive (1977), which I shall now explain. 

Earlier work of Englert and Windey (1976) and of Goddard, Nuyts, and 
Olive (1977) has shown that in a gauge theory of the non-Abelian group G 
spontaneously broken to the smaller group H, the magnetic monopoles can 
be, so to speak, classified according to a new "dual" group *H. This dual 

g roup  *H has the same dimension as but need not coincide with H. For 
example, *SU(3) = SU(3)/Z3 [Z3 is the center of SU(3)], *Spin (2r + 1) = 
Sp (2r)tZz [Spin (n) is the simply connected covering group of O(n) and 
Sp (2r) is the symplectic group] and **H = H. Unlike H, the dual group 
*H is not a manifest (Noetherian) symmetry of the theory. Rather, the 
quantum numbers associated with it are topological. Montonen and Olive 
(1977) then ask whether there could be an alternative picture of the theory in 
which *H or indeed a group *G, dual in some sense to the "large" group G, 
becomes a manifest Noetherian symmetry and G and H become topological. 
The roles of Noetherian and of topological quantum numbers would be 
interchanged in the two pictures. In two dimensions an example along these 
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lines is provided by the Sine-Gordon model and (the zero charge sector of) 
the massive Thirring model for which the work of Coleman, Luther, Emery, 
and others shows that 

*(Sine-Gordon theory) = massive Thirring model 

In four dimensions Montonen and Olive propose that the dual of the SO(3) 
't Hooft-Polyakov model reviewed above is a model of the same type with a 
different coupling parameter. Such a statement can be convincingly estab- 
lished only quantum theoretically, just as in the 2D example. But they note a 
number of features of the 't Hooft-Polyakov model already at the classical 
level that make the suggestion quite plausible. Consider, along with the 
Lagrangian ..W(e, a, h, ~", W;,") given above, also a dual Lagrangian *.W 
defined as 

*.W = .W(*e, *a, *h, ,6a, . W  a) 

Now take the Prasad-Sommerfield limits of both the .W and *.W theories 
(i.e., let ~ and *)t ~ 0 while keeping a and *a fixed). ! n this limit the gauge 
boson, Higgs boson, and monopole spectra of the two theories are presented 
in Table 1. 

TABLE 1. Particle spectra of the s and ,~v theories in the Prasad-Sommerfield 
limit. 

Particle 

Electric Magnetic 
Lagrangian Role Spin/h Name Mass charge charge 

s Gauge boson 1 W + 

W -  

Higgs boson 0 o 

Monopole 9 M + 

M -  

lela 
lela 
0 

0 

4,t 
le--i a 
4~r 
[ -~a 

+e 0 
--e 0 
0 0 

0 0 

0 + 4rr/e 

0 --4rr/e 

~.Sa Gauge boson 1 *W + I*el*a + * e  0 
* w -  [*el*a � 9  0 

*~ 0 0 0 
Higgs boson 0 *~r 0 0 0 

Monopole .9 *M + ' 4~r *a 0 +4~r/*e 

I'el 
* M -  47r. '*a 0 -47r/*e 

I'el 
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The spin of the monopoles is not determined in classical theory. Spherical 
symmetry of the monopole solutions just guarantees that the corresponding 
quantum states will have definite spin rather than being accompanied by 
higher spin orbital excitations. Assume now that the spin of the monopoles 
in units of h equals 1. Then for the choice (notice e and *e are both in 
rationalized units) 

4,rr 
*e = - -  *a --- a 

e 

the two particle spectra become identical provided one sets up the corre- 
spondence 

*M + =  W ~ *W* = M ~- " 7 = 7  *~=  

electric ] /magnetic] 
magnetic/ charge for theory ~- \ electric ! charge for theory, 

But 4~r/e is precisely the rationalized value of the magnetic charge of the 
monopoles in the La theory. Thus we are presented with the possibility of two 
dual pictures of the 't Hooft model, the original (La) picture and the dual 
(*L~') picture, such that: (a) the monopoles of one are the massive gauge 
bosons of the other and vice-versa; (b) the photon and Higgs boson are the 
same for both pictures; and (c) electric and magnetic charge change roles 
between the two pictures. We thus see that the Noetherian and topological 
conservation laws are interchanged between the two pictures (just like in the 
Sine-Gordon-Thirring case). The real gauge group is then O(3)e x O(3)m. 
This is not a manifest symmetry as in the Abelian case but rather in one 
picture O(3)e is manifest and O(3)m is topological, while it is the other way 
round in the dual picture. For this picture to make sense the monopoles must 
have spin 1, andthis can be decided only at the quantum level. But even at the 
classical level there are further constraints. First of all, the number of 
spherically symmetric monopoles must equal that of massive gauge bosons 
of which for the 0(3) ---> 0(2) spontaneous breaking we know there are two. 
Now, according to a result of Guth and Weinberg (1976), there are precisely 
two spherically symmetric monopole solutions in this model and they have 
equal masses and equal and opposite magnetic charges. So this result agrees 
with the.interpretation o f  monopoles as gauge bosons. 

Finally, Manton (1977) has derived the long-range forces between 
monopoles in the Prasad-Sommerfield limit. He finds that opposite magnetic 
charges attract with double the normal Coulomb force, while like magnetic 
charges exert no long-range forces upon each other. But this is also the pattern 
of long-range forces between gauge bosons. Indeed, these forces are due to 
the exchange of the massless 9' and cr quanta. The "photon" 7 gives rise to a 
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Coulomb force, while the scalar g exchange, like gravitation, is always 
attractive and minimal coupling determines its strength to be such that it 
doubles the strength of long gauge force between opposite charges, while 
precisely canceling the Coulomb repulsion between like charges. 

There are further implications, e.g., on the dyon spectrum, which I will 
not discuss here. Rather, I would like to add some new results. An SU(3)-gauge 
field coupled to an octet of scalar fields with a renormalizable self-interaction 
potential will in general lead to a spontaneous breaking of SU(3).' down to 
SU(2) • U(1). In principle, breaking to U(1) • U(1)is  possible due to 
quantum effects or  to more than one octet of scalar fields. I assume that 
somehow SU(3) has been spontaneously broken to U(1) x U(1) along the 
"~3 direction." Then six of the eight gauge bosons acquire mass in such a way 
that the heaviest two are degenerate as are the lightest four, and the heavier 
ones are precisely twice heavier than the lighter ones. There are also two Higgs 
bosons. In this case a Prasad-Sommertield limit of the monopole spectrum is 
again exactly soluble. One finds six spherically symmetric monopole solutions, 
two of which have twice the mass of the remaining (degenerate) four~ and as 
in the SO(3) case the gauge-boson-monopole mass and  quantum number 
spectrum is unchanged under an electric-magnetic interchange (higher special 
unitary gauge theories can be studied along the same lines). For the break- 
down pattern considered here SU(3) ~ U(1) x U(1) one finds the structure 
of two "photons" coupled to six electrically and six magnetically charged 
"gauge-bosons-monopoles." The symmetry is SU(3)e x SU(3)m and, 
although one has found the counterparts of the two Montonen-Olive pictures 
in which either of the two SU(3)'s is made manifest, one cannot but wonder 
whether a formulation manifestly exhibiting the full SU(3)e x SU(3)m 
symmetry exists, as in the Abelian case. 

I would also like to observe that in general the two pictures will not be so 
similar. In both examples considered above the small group (H) is a product 
of U(1) groups and as such identical to its dual *H. But for breaking of, say, 
G = SU(3)to H = SU(2) • U(1), one finds *H = SU(2)/Z~ x U(1) ~ H, 
so that the two pictures should not be so similar. Moreover, in the presence of 
further scalar fields with appropriate quantum numbers one may encounter 
the "isospin becomes spin" phenomenon ('t Hoof  t, Hasenfratz, Jackiw, Rebbi, 
Goldhaber) 'and find fermionic dyons that have half-oddinteger spin. In such 
cases, say, an "electric" picture with a purely bosonic Lagrangian might lead 
to a "magnetic" picture in which some of the fields are fermionic, possibly 
quarks(?), and even supersymmetry may appear. But this fs piling speculations 
upon speculations. Rather let us reemphasize the main impact of the 
Montonen-Olive conjecture. It restores the analogy to the Abelian case and 
essentially claims that spontaneously broken gauge theories have a second 
copy of the symmetry hidden in the monopole sector. The remarkable feature 
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is that this doubling of  the symmetry comes "for  free," conditioned, as it 
were, by the topology of  gauge theories. 
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